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Abstract

A description is given of nineteen 4-connected nets
with one kind of vertex and containing 3-rings. Many
of them are believed to be new.

Introduction

This paper continues the systematic description and
analysis of three-dimensional 4-connected nets with

one kind of vertex (‘uninodal’) begun in paper 1.

(O’Keeffe & Brese, 1992), which should be consulted
for terminology and references. In this paper, 4-
connected nets with at least one 3-ring are discussed;
it follows a similar format to paper I: crystallographic
descriptions are given in Table 1, coordination
sequences in Table 2 and ring statistics in Table 3.
Descriptions of some individual nets follow.

Nets with three 3-rings at a vertex

Nets 25 to 29. These nets all have three 3-rings
meeting at a vertex. For such a three-dimensional net
with equal edges, the vertices must be at the vertices
of a regular tetrahedron and can be derived from
simpler 4-connected nets by replacing a vertex by
such a tetrahedron. For this to result in a uninodal

Fig. 1. Net 34 shown as corner-sharing triangles.
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net, the edges of the original net must all be equivalent
(the net must be quasiregular). The procedure and
the resulting nets (which are also of interest as rare
sphere packings) have been described in some detail
elsewhere (O’Keeffe, 1991). Net 25 appears to be the
rarest known uninodal 4-connected net (Fischer,
1974).

Nets with two 3-rings at a vertex

Net 34. This is known as the lattice complex *V
(Fischer & Koch, 1985) and is illustrated in Fig. 1.
It is the only net of this compilation with two 3-rings
meeting at a vertex. It is not difficult to see that such
a uninodal net must have the 3-rings at opposite
angles. The centers of the triangles formed by the
3-rings will fall on a 3-connected net and the vertices
of the 4-connected net at the mid-points of the edges
of the 3-connected net. As Wells (1977) has pointed
out, for the 4-connected net to be uninodal, the edges
of the 3-connected net must all be equivalent. The
only such 3-connected net appears to be that of the
Si atoms in SrSi, (lattice complex * Y*) from which
this net is derived, so it is likely that there is only one
uninodal net with two 3-circuits meeting at a vertex.t

T The two-dimensional net 3.6.3.6 (kagomé) is related to 63
(honeycomb) in an analogous way.

Fig. 2. Net 36 projected on (001). Open and filled circles are at
z=0 and z=1/2. This drawing also serves to illustrate net 30
if the open circles are interpreted as superimposed points at
2=0.09 and 0.41 and filled circles as points at z = 0.59 and 0.91.
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Table 1. Crystallographic data for nets with edge length of unity

r is the number of vertices per unit volume. For centrosymmetrical structures, the origin is chosen on a center.

Net Space group a,(c)

25 14,32 4+2x2'?
26 Im3m 2+3x2'/2
27 Fd3m 2x2+4/3"2
28 Ia3d 7.1678

29 P6,22 3.5497

30 P63/ mmc 3.4536, 3.0875
31 14,32 [8/(9—-6x2'*)]"2
32 R32 3.3918, 4.4330
33 Fm3m 2+3x2'/2
34 14,32 (32/3)'/2

35 R3c 3.6720, 5.4911
36 P63/ mmc 3.1196, 1.5260
37 Pm3m 2/(3-6"?)
38 R32 5/3'/2 512
39 Pa3 3.5334

40 R3¢ 2.7736, 8.7009
41 1432 (32/3)'/?

42 F4,32 4/(2x3"Y%-6"?)
43 R3c 2.6373, 3.7637

One can, of course, make a large number of binodal
nets of this type. Perhaps the simplest is that derived
from the Si net of the ThSi, structure (Wells, 1977);
it has a compact crystallographic description:
I4,/amd, a =2, ¢ = 4v/3 with vertices in 4(a) and 8(c).
This last net is the net of the Ge atoms in GeS,.

Nets with one 3-ring at a vertex

These nets fall into two categories: (a) hexagonal or
rhombohedral nets with all 3-rings parallel and (b)
cubic nets with 3-rings normal to the four threefold
symmetry axes. The former are discussed first.

Nets 36 and 38. Net 36 (Fig. 2) and net 38 (Fig.
3) represent the two simplest ways of connecting
triangles to have a two- or three-layer sequence,
respectively. Nets 36 and 38 are, respectively, nos. 94
and 92 of Smith (1979); net 38 was also described by
Wells (1977).

Nets 30 and 32. Net 30 is simply derived from net
36 by replacing the triangles by right triangular prisms

Fig. 3. Net 38 projected on (001) of the hexagonal ceil. Numbers
represent elevations in multiples of ¢/3.

X, y, z r
x=y=2"%8 z=0 0.151
48(k), ay = 1/2+22, 0.197
az=1/2+3/2"?

32(e), x=1/(8+4x6'?) 0.236
0.0646, 0.2238, 0.4243 0.261
0.4579, 0.1150, 0.0910 0.283

12(k), x =0.4299, z =0.0881 0.376
24(h), x=(82-1)/8 0.391
0.1917, 0.1335, 0.1048 0.403
96(k), x=(1+2"?)z, 0.395

z=1/(4+6x2"?)
12(¢) 0.344
0.1543, 0.5510, 0 0.561
6(h), x=0.4402 . 0.457
24(j), x=(3-6'?)/4 0.501
, 9d),x=1/5 0.558
0.1046, 0.1709, 0.3295 0.544
0.1108, 0.4767, 0.0417 0.618
24(i), x=1/8 0.689
48(g), x=0.0214 0.783
18(e), x =0.2192 0.794

Table 2. Numbers of kth neighbors, ny; n, =4 in every

case
1000p, is the total number of vertices in the first ten coordination
shells.
Net n, n; n, ns ng ny nmg my nyg  py
25 6 11 12 22 24 44 48 88 91 0.350
26 6 12 17 28 38 52 64 84 104 0.409
27 6 12 18 36 48 60 78 108 126 0.496
28 6 12 18 36 49 68 88 124 147 0.552
29 6 12 18 36 51 84 103 124 156 0.594
30 8 16 28 42 64 8 110 141 178 0.680
31 8§ 13 22 38 64 89 112 150 196 0.696
32 8 16 32 49 67 93 123 149 188 0.729
33 9 18 30 47 69 91 125 160 191 0.744
34 8 16 32 54 70 102 128 158 212 0.784
35 8 16 32 49 70 101 135 166 212 0.793
36 10 20 34 58 82 108 144 186 222 0.868
37 9 20 38 59 84 114 148 187 230 0.893
38 10 26 40 66 90 126 160 206 250 0.978
39 10 25 40 69 92 132 165 218 261 1.016
40 10 26 43 74 106 149 194 256 308 1.170
41 10 23 43 76 108 156 206 270 335 1.231
42 10 22 42 78 118 166 232 292 374 1.338
43 10 26 46 82 120 176 230 302 366 1.362

Fig. 4. Net 32 projected on (001) of the hexagonal cell. Numbers
represent elevations in multiples of ¢/100.



672

UNINODAL 4-CONNECTED 3D NETS. II

Table 3. Rings in nets with 3-rings

N; is the number of i-rings meeting at each vertex. ‘Short’ and ‘long’ refer to Schléfli symbols defined in paper I of this series (O’Keeffe
& Brese, 1992).

Net Z, Short Long N,
25 24 3%6.72 3.6.3.20,.3.20; 3
26 24 3%89° 38.3.12.3.12 3
27 8 3212 3.12,.3.12,.3.12, 3
28 43 3128 3.12.3.12,.3.12, 3
29 12 3212213 3.12.3.12,.3.16, 3
30 12 3.42.8° 3.8,.4.8.4.8 1
31 12 342527 ¥.14,5.4.4.143.14,, 1
32 6 3.4%9° 3.95.4.9,.4.9; 1
33 24 3.4.62.8% 3.4.6.8.6.8 1
34 6 32.10° 3.3.10,.10,.105.10, 2
35 12 3.429° 3.95.4.9,.4.9, 1
36 6 3.6° 3.6,.6.6.6.6 1
37 24 3.4.8% 3.4.8.8.8,.8, 1
38 3 37° 3.7.1.17,.7, 1
39 24 3.6.7% 3.6.7.1.7,.7, 1
40 12 3.7° 3.1.1.1.7,.7, 1
41 12 36277 3.6.6.6.8.8 1
42 12 3.6°9 3.9.6.6.6.6 1
43 12 3.7° 3.1.7.1.7,7, 1

(see the caption for Fig. 2). Net 32 is analogously
obtained from net 38. In its maximum-volume form
(illustrated in Fig. 4), the prisms are somewhat dis-
torted. Nets 30 and 32 are, respectively, nos. 64 and
65 of Smith (1978). Net 32 was also described by
Wells (1977).

Nets 35, 40 and 43. These nets (all with symmetry
R3c¢) continue the series started with nets 36 and 38.
Nets 35 (Fig. 5) and 43 (Fig. 6) have a six-layer repeat
and net 40 (Fig. 7) has a twelve-layer repeat. I have
not found these nets described elsewhere.

Net 33. This is familiar as the net of a space filling
by truncated tetrahedra, truncated cubes and trun-
cated cuboctahedra (Andreini, 1907); for an illustra-
tion see, for example, Wells (1977).

Nets 31, 37, 39 and 41. These nets form a closely
related group. They all have 24 vertices in a cubic
unit cell in which eight triangles are perpendicular

Fig. 5. Net 35 projected on (001) of the hexagonal cell. Progres-
sively darker shading represents increasing elevations from z =0
(open circles), 1/6, 2/6, 3/6, 4/6 and 5/6 (filled circles).

N, N¢ N; Ny Ny N N; Ny Nig Nig Ny Ny
0 1 0 0 0 0 0 0 0 0 5 0
0 0 0 1 0 0 2 0 0 0 0 16
0 0 0 0 0 0 6 0 0 0 0 0
0 0 0 0 0 0 3 0 0 0 0 0
0 0 0 0 0 0 3 0 20 0 0 0
2 0 0 4 0 0 2 0 0 0 0 0
2 0 0 0 0 0 0 175 0 0 0 0
2 0 0 0 9 0 2 0 0 0 0 0
1 2 0 2 0 0 2 0 0 36 0 0
0 0 0 0 0 10 0 0 0 0 0 0
2 0 0 0 9 0 2 0 0 0 0 0
0 6 0 0 0 0 40 0 0 0 0 0
1 0 0 6 0 10 4 0 0 0 0 0
0 0 7 0 0 0 0 0 0 0 0 0
0 1 7 0 0 5 0 0 0 0 0 0
0 0 7 0 0 5 0 0 0 0 0 0
0 3 0 4 0 10 4 0 0 0 0 0
0 4 0 0 3 0 0 0 0 0 0 0
0 0 7 0 0 10 0 0 0 0 0 0

to the four threefold axes. Net 31 is difficult to illus-
trate satisfactorily owing to the large rings (see Table
3). The others (see Figs. 8-10) are simpler. Net 39
(Fig. 9) occurs as the net of the tetrahedrally coordi-
nated cations in CaB,0,, SrB,O,, BaAl,S, and

Fig. 6. Net 43 projected on (001) of the hexagonal cell. Numbers
represent elevations in multiples of ¢/12.

Fig. 7. Net 40 projected on (001) of the hexagonal cell. Progres-
sively darker shading represent increasing elevations from
z=1/24 (open circles), 3/24, 5/24, 7/24, 9/24, 11/24, 13/24,
15/24, 17/24, 19/24, 21/24 and 23/24 (filled circles).
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BaGa,S,. The others have not been identified else-
where other than in Fischer’s list of cubic sphere
packings (Fischer, 1973, 1974) but might also be

expected to occur in crystal structures.

Fig. 8. Clinographic projection of net 37. The cubic unit cell is
outlined.

Fig. 9. Clinographic projection of net 39. The cubic unit cell is
outlined.

Fig. 10. Clinographic projection of net 41. The cubic unit cell is
outlined.

Fig. 11. Projection of net 42 on (001). Progressively darker shading
indicates increasing elevation from z =0.02 to z = 0.98 (all eleva-
tions are within £0.02 of multiples of 1/8).

Net 42. This net (Fig. 11) is of interest as a dense
net with 3-rings. The structure is simply derived from
the rods of the A15 structure [i.e. Cr of Cr;Si (see
O’Keeffe & Andersson, 1977)] by small displacements
along (110) to produce a 2 x 2 x 2 superstructure. The
positional parameter (x =0.021, Table 1) has to be
changed to x =0 to recover the A15 rods.

Discussion

Nets with 3-rings have a remarkably wide range of
densities and ring sizes. The largest rings are 24-rings
(in net 26). Strong rings (Goetzke & Klien, 1991) are
those which cannot be decomposed into sums of
smaller circuits. The largest of these are the 20-rings
occurring in net 25. The very simple net 38 with only
three vertices in the repeat unit appears to be the only
uninodal net in which all the rings are odd.

This work was supported by a grant
(DMR 8813524) from the National Science
Foundation.
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