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Abstract 

A description is given of  nineteen 4-connected nets 
with one k ind  of  vertex and containing 3-rings. Many  
of them are bel ieved to be new. 

Introduction 

This paper  continues the systematic descript ion and 
analysis of  three-d imensional  4-connected nets with 
one kind of  vertex ( 'un inodal ' )  begun in paper  I 
(O'Keeffe & Brese, 1992), which should be consulted 
for terminology and references. In this paper,  4- 
connected nets with at least one 3-ring are discussed; 
it follows a s imilar  format  to paper  I: crystal lographic 
descriptions are given in Table 1, coordinat ion 
sequences in Table 2 and  ring statistics in Table 3. 
Descript ions of  some individual  nets follow. 

Nets with three 3-rings at a vertey 

Nets 25 to 29. These nets all have three 3-rings 
meeting at a vertex. For such a three-dimensional  net 
with equal  edges, the vertices must be at the vertices 
of  a regular tetrahedrort and can be derived from 
simpler  4-connected nets by replacing a vertex by 
such a tetrahedron.  For this to result in a un inodal  

net, the edges of  the original net must all be equivalent  
(the net must  be quasiregular) .  The procedure  and 
the resulting nets (which are also of  interest as rare 
sphere packings)  have been described in some detail 
elsewhere (O'Keetie ,  1991). Net 25 appears  to be the 
rarest known un inoda l  4-connected net (Fischer, 
1974). 

Nets with two 3-rings at a vertex 

Net 34. This is known as the lattice complex +V 
(Fischer & Koch,  1985) and is i l lustrated in Fig. 1. 
It is the only net of  this compila t ion with two 3-rings 
meeting at a vertex. It is not difficult to see that such 
a uninodal  net must have the 3-rings at opposite 
angles. The centers of  the triangles formed by the 
3-rings will fall  on a 3-connected net and the vertices 
of  the 4-connected net at the mid-points  of  the edges 
of  the 3-connected net. As Wells (1977) has pointed 
out, for the 4-connected net to be uninodal ,  the edges 
of  the 3-connected net must all be equivalent.  The 
only such 3-connected net appears to be that of  the 
Si atoms in SrSi2 (lattice complex ÷ Y*) from which 
this net is derived, so it is likely that there is only.one 
uninodal  net with two 3-circuits meeting at a vertex.t  

t The two-dimensional net 3.6.3.6 (kagomr) is related to 63 
(honeycomb) in an analogous way. 

Fig. 1. Net 34 shown as corner-sharing triangles. 
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Fig. 2. Net 36 projected on (001). Open and filled circles are at 
z = 0 and z = 1/2. This drawing also serves to illustrate net 30 
if the open circles are interpreted as superimposed points at 
z = 0.09 and 0.41 and filled circles as points at z = 0.59 and 0.91. 
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Table 1. Crystallographic data for nets with edge length of  unity 

r is t h e  n u m b e r  o f  ve r t i c e s  p e r  un i t  v o l u m e .  F o r  c e n t r o s y m m e t r i c a l  s t r u c t u r e s ,  t h e  o r i g i n  is c h o s e n  o n  a cen te r .  

Net S p a c e  g r o u p  a, ( c )  x, y, z r 

25 I4Q2  4 + 2 x 2 1 / 2  x= y= 21/2/8, z = 0  0.151 
26 Im3m 2 + 3  x21/2 48(k),  ay = 1 / 2 + 2  I/2, 0.197 

az = 1 / 2 + 3 / 2  I/2 
27 Fd3 m 2 x 2 + 4/3 i/2 32(e), x = l / ( 8  + 4 × 61/2) 0.236 
28 Ia3d 7.1678 0.0646, 0.2238, 0.4243 0.261 
29 P6222 3.5497 0.4579, 0.1150, 0.0910 0.283 
30 P63/mmc 3.4536, 3.0875 12(k), x = 0.4299, z = 0.0881 0.376 
31 14132 [ 8 / ( 9 - 6  x 21/2)] I/2 24(h), x = (81/2 - 1)/8 0.391 
32 R32 3.3918, 4.4830 0.1917, 0.1335, 0.1048 0.403 
33 Fm3m 2 + 3  × 2 !/2 96(k),  x = (1 + 21/2)z, 0.395 

z =  1 / ( 4 + 6 x 2  I/2) 
34 14132 (32/3) 1/2 12(c) 0.344 
55 R3c 3.6720, 5.4911 0.1543, 0.5510, 0 0.561 
36 P63/mmc 3.1196, 1.5260 6(h), x = 0.4402 . 0.457 
37 Pm3m 2/(3 - 6 I/2) 24(j) ,  x = (3 - 61/2)/4 0.501 
38 R32 5/31/2, 51/2 , 9(d) ,  x = 1/5 0.558 
39 Pa3 3.5334 0.1046, 0.1709, 0.3295 0.544 
40 R3c 2.7736, 8.7009 0.1108, 0.4767, 0.0417 0.618 
41 I432 (32/3) 1/2 24(i), x = 1/8 0.689 
42 F4132 4/(2 x 31/2 - 61/2) 48(g), x = 0.0214 0~783 

43 R3c 2.6373, 3.7637 18(e), x = 0.2192 0.794 

One can, of course, make a large number of binodal 
nets of this type. Perhaps the simplest is that derived 
from the Si net of the ThSi2 structure (Wells, 1977); 
it has a compact crystallographic description: 
I4Jamd ,  a = 2, c = 4,/3 with vertices in 4(a) and 8(c). 
This last net is the net of the Ge atoms in GeS2. 

Nets  with one 3-ring at a vertex 

These nets fall into two categories: (a) hexagonal or 
rhombohedral nets with all 3-rings parallel and (b) 
cubic nets with 3-rings normal to the four threefold 
symmetry axes. The former are discussed first. 

Nets 36 and 38. Net 36 (Fig. 2) and net 38 (Fig. 
3) represent the two simplest ways of connecting 
triangles to have a two- or three-layer sequence, 
respectively. Nets 36 and 38 are, respectively, nos. 94 
and 92 of Smith (1979); net 38 was also described by 
Wells (1977). 

Nets 30 and 32. Net 30 is simply derived from net 
36 by replacing the triangles by fight triangular prisms 

Table 2. Numbers of  kth neighbors, nk ; n~ = 4 in every 
case 

1000pl  o is t h e  t o t a l  n u m b e r  o f  ve r t i c e s  in t he  first  t e n  c o o r d i n a t i o n  
she l l s .  

N e t  n 2 n 3 ~4 n5 n6 n7 ~8 n9 ~10 ill0 

25 6 11 12 22 24 44 48 88 91 0.350 
26 6 12 17 28 38 52 64 84 104 0.409 
27 6 12 18 36 48 60 78 108 126 0.496 
28 6 12 18 36 49 68 88 124 147 0.552 
29 6 12 18 36 51 84 103 124 156 0.594 
30 8 16 28 42 64 89 110 141 178 0.680 
31 8 13 22 38 64 89 112 150 196 0.696 
32 8 16 32 49 67 93 123 149 188 0.729 
33 9 18 30 47 69 91 125 160 191 0.744 
34 8 16 32 54 70 102 128 158 212 0.784 
35 8 16 32 49 70 101 135 166 212 0.793 
36 10 20 34 58 82 108 144 186 222 0.868 
37 9 20 38 59 84 114 148 187 230 0.893 
38 10 26 40 66 90 126 160 206 250 0.978 
39 10 25 40 69 92 132 165 218 261 1.016 
40 10 26 43 74 106 149 194 256 308 1.170 
41 10 23 43 76 108 156 206 270 335 1.231 
42 10 22 42 78 118 166 232 292 374 1.338 
43 10 26 46 82 120 176 230 302 366 1.362 

2 0 1 

Fig.  3. N e t  38 p r o j e c t e d  o n  (001)  o f  t h e  h e x a g o n a l  cel l .  N u m b e r s  
r e p r e s e n t  e l e v a t i o n s  in m u l t i p l e s  o f  c/3. 

77 56 10 90 44 23 

Fig.  4. N e t  32 p r o j e c t e d  on  (001)  o f  t h e  h e x a g o n a l  ce l l .  N u m b e r s  
r e p r e s e n t  e l e v a t i o n s  in  m u l t i p l e s  o f  c / 1 0 0 .  
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T a b l e  3. Rings in nets with 3-rings 

Ni is the number of/-rings meeting at each vertex. 'Short' and 'long' refer to Schl/ifli symbols defined in paper I of this series (O'Keeffe 
& Brese, 1992). 

Net Z t Short Long N 3 N 4 N 6 N 7 N s N 9 N~o Nt2 Nl4 N16 N1s N20 N24 
25 24 33.6.72 3.6.3.202.3.203 3 0 1 0 0 0 0 0 0 0 0 5 0 
26 24 33.8.92 3.8.3.12.3.12 3 0 0 0 1 0 0 2 0 0 0 0 16 
27 8 33.123 3.122.3.122.3.122 3 0 0 0 0 0 0 6 0 0 0 0 0 
28 48 33.123 3.12.3.122.3.122 3 0 0 0 0 0 0 3 0 0 0 0 0 
29 12 33.122.13 3.12.3.122.3.167 3 0 0 0 0 0 0 3 0 20 0 0 0 
30 12 3.42.83 3.82.4.8.4.8 1 2 0 0 4 0 0 2 0 0 0 0 0 
31 12 3.42.52.7 3H475.4.4.143o.143o 1 2 0 0 0 0 0 0 175 0 0 0 0 
32 6 3.42.93 3.93.4.92.4.93 1 2 0 0 0 9 0 2 0 0 0 0 0 
33 24 3.4.62.82 3.4.6.8.6.8 1 1 2 0 2 0 0 2 0 0 36 0 0 
34 6 3 2 . 1 0 4  3.3.102.102.103.103 2 0 0 0 0 0 10 0 0 0 0 0 0 
35 12 3.42.93 3.93.4.92.4.93 1 2 0 0 0 9 0 2 0 0 0 0 0 
36 6 3.65 3.62.6.6.6.6 1 0 6 0 0 0 0 40 0 0 0 0 0 
37 24 3.4.84 3.4.8.8.82.82 1 1 0 0 6 0 10 4 0 0 0 0 0 
38 3 3.75 3.7.7.7.72.72 1 0 0 7 0 0 0 0 0 0 0 0 0 
39 24 3.6.74 3.6.7.7.72.72 1 0 1 7 0 0 5 0 0 0 0 0 0 
40 12 3.75 3.7.7.7.72.72 1 0 0 7 0 0 5 0 0 0 0 0 0 
41 12 3.63.72 3.6.6.6.8.8 1 0 3 0 4 0 10 4 0 0 0 0 0 
42 12 3.64.9 3.9.6.6.6.6 1 0 4 0 0 3 0 0 0 0 0 0 0 
43 12 3.75 3.7.7.7.72.72 1 0 0 7 0 0 10 0 0 0 0 0 0 

( s ee  t h e  c a p t i o n  f o r  F ig .  2).  N e t  32 is a n a l o g o u s l y  
o b t a i n e d  f r o m  n e t  38. I n  its m a x i m u m - v o l u m e  f o r m  
( i l l u s t r a t e d  in  F ig .  4) ,  t h e  p r i s m s  a re  s o m e w h a t  d is -  
t o r t e d .  N e t s  30  a n d  32 a re ,  r e s p e c t i v e l y ,  n o s .  64  a n d  
65 o f  S m i t h  (1978) .  N e t  32 w a s  a l s o  d e s c r i b e d  b y  
W e l l s  (1977) .  

Nets 35,  40  and 43. T h e s e  n e t s  (a l l  w i t h  s y m m e t r y  

R3c) c o n t i n u e  t h e  se r i e s  s t a r t e d  w i t h  n e t s  36 a n d  38. 
N e t s  35 (F ig .  5) a n d  43 (F ig .  6) h a v e  a s i x - l a y e r  r e p e a t  
a n d  n e t  40  (F ig .  7) h a s  a t w e l v e - l a y e r  r e p e a t .  I h a v e  
n o t  f o u n d  t h e s e  n e t s  d e s c r i b e d  e l s e w h e r e .  

Net 33. T h i s  is f a m i l i a r  as  t h e  n e t  o f  a s p a c e  f i l l ing  
b y  t r u n c a t e d  t e t r a h e d r a ,  t r u n c a t e d  c u b e s  a n d  t r u n -  
c a t e d  c u b o c t a h e d r a  ( A n d r e i n i ,  1907) ;  f o r  a n  i l l u s t r a -  
t i o n  see ,  f o r  e x a m p l e ,  W e l l s  (1977) .  

to  t h e  f o u r  t h r e e f o l d  axes .  N e t  31 is d i f f i cu l t  t o  i l lus -  
t r a t e  s a t i s f a c t o r i l y  o w i n g  to  t h e  l a r g e  r i n g s  ( s ee  T a b l e  

3). T h e  o t h e r s  ( s ee  F igs .  8 - 1 0 )  a re  s i m p l e r .  N e t  39 
(F ig .  9) o c c u r s  as  t h e  n e t  o f  t h e  t e t r a h e d r a l l y  c o o r d i -  

n a t e d  c a t i o n s  in  C a B 2 0 4 ,  S r B 2 0 4 ,  BaA12S4 a n d  

11 3 7 

Nets 31,  37,  39 and 41. T h e s e  n e t s  f o r m  a c l o s e l y  
r e l a t e d  g r o u p .  T h e y  al l  h a v e  24 v e r t i c e s  in  a c u b i c  
u n i t  cel l  in  w h i c h  e i g h t  t r i a n g l e s  a r e  p e r p e n d i c u l a r  

Fig. 5. Net 35 projected on (001) of the hexagonal cell. Progres- 
sively darker shading represents increasing elevations from z = 0 
(open circles), 1/6, 2/6, 3/6, 4/6 and 5/6 (filled circles). 

Fig. 6. Net 43 projected on (001) of the hexagonal cell. Numbers 
represent elevations in multiples of c/12. 

Fig. 7. Net 40 projected on (001) of the hexagonal cell. Progres- 
sively darker shading represent increasing elevations from 
z=  1/24 (open circles), 3/24, 5/24, 7/24, 9/24, 11/24, 13/24, 
15/24, 17/24, 19/24, 21/24 and 23/24 (filled circles). 
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BaGa2S4. The others have not been identified else- 
where other  . than in Fischer 's  list of  cubic sphere 
packings (Fischer,  1973, 1974) but might  also be 
expected to occur  in crystal structures. 

Fig. 11. Projection of net 42 on (001). Progressively darker shading 
indicates increasing elevation from z = 0.02 to z = 0.98 (all eleva- 
tions are within +0.02 of multiples of 1/8). 

Fig. 8. Clinographic projection of net 37. The cubic unit cell is 
outlined. 

O" 

Fig. 9. Clinographic projection of net 39. The cubic unit cell is 
outlined. 

Fig. 10. Clinographic projection of net 41. The cubic unit cell is 
outlined. 

N e t  42. This net (Fig. 11) is of  interest as a dense 
net with 3-rings. The structure is simply derived f rom 
the rods of  the A15 structure [i.e. Cr of  Cr3Si (see 
O'Keeffe  & Andersson,  1977)] by small d isplacements  
along (110) to produce  a 2 x 2 x 2 superstructure.  The 
posit ional pa rame te r  ( x = 0 . 0 2 1 ,  Table 1) has to be 
changed  to x = 0 to recover the A15 rods. 

Discussion 

Nets with 3-rings have a remarkably  wide range of  
densities and  ring sizes. The largest rings are 24-rings 
(in net 26). Strong rings (Goetzke & Klien, 1991) are 
those which cannot  be decomposed  into sums of  
smaller  circuits. The largest of  these are the 20-rings 
occurring in net 25. The very simple net 38 with only 
three vertices in the repeat  unit  appears  to be the only 
uninodal  net in which all the rings are odd.  

This work was suppor ted  by a grant  
(DMR8813524)  from the Nat ional  Science 
Foundat ion .  
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